Lithium battery module

Lithium batteries are becoming increasingly popular in a wide range of applications from consumer electronics to electric vehicles. But what’s the technology behind these batteries that makes them so powerful?

  • Free local delivery
    Free local delivery
  • 25-year power supply warranty
    25-year power supply warranty
  • Lifetime Customer Support
    Lifetime Customer Support
Certifications and Standards

There are several important certifications and standards that lithium battery modules must meet in order to be used in various applications. These include the UN38.3 Transportation of Dangerous Goods Test, IEC 62133 Safety Standard for Portable Lithium Batteries, UL 1642 Standard for Safety for Lithium Batteries, and more.

Lithium battery modules must undergo rigorous testing in order to receive these certifications and standards. The UN38.3 Transportation of Dangerous Goods Test is a set of international standards that regulate the shipment of dangerous goods such as lithium batteries. IEC 62133 is the safety standard for portable lithium batteries, and covers aspects such as design, manufacture, storage, transportation, and disposal. UL 1642 is the standard for safety for lithium batteries, covering topics such as flammability, overcharge protection, and short-circuit protection.

meeting these certifications and standards ensures that lithium battery modules are safe to use in a variety of applications.

feature
lithium battery module
design attributes

Name

Technical parameter

Cell type

LFP48173170E-120Ah

product

The fifth generation

Module model

HJESLFP-38240

HJESLFP-76120

compound mode

2P12S

1P 24S

nominal voltage (V)

38.4

76.8

Rated capacity (Ah)

240

120

Nominal energy (kWh)

9.216

9.216

Standard charging current (A)

120(0.5C)

120(1C)

Maximum charging current (A)

150(0.625C)@5S

150(1.25C) @5S

Standard discharge current (A)

120(0.5C)

120(1C)

Maximum discharge current (A)

150(0.625C) @5S

150(1.25C) @5S

cooling-down method

natural air cooling

Forced air cooling (power  adjustment)

running voltage (V)

33.6~43.2

67.2~86.4

Size (width, depth and height) (mm)

468×642×202

468×642×202

weight (kg)

90±1.5

90±1.5

IV curve

A lithium battery module IV curve is a graphical representation of the discharge characteristics of a lithium ion battery. The x-axis represents the discharge current in amperes and the y-axis represents the voltage across the battery terminals. The area under the curve represents the total energy delivered by the battery during discharge.

The shapes of lithium battery module IV curves vary depending on the type of cell chemistry and the design of the cell. LiCoO2 cells typically have a flat discharge profile with little change in voltage until almost all of the capacity has been discharged. LiFePO4 cells typically have a more gradual drop in voltage as they discharge.

Cell designers can tailor the shape of the discharge curve to match the needs of a particular application. For example, if an application requires a long run time at a constant voltage, a cell with a flatter discharge curve may be used. If an application requires high power output for a short period of time, a cell with a steeper discharge curve may be used.

Electrical performance

A lithium battery module is a high performance, reliable and safe power solution for a wide range of applications. Lithium battery modules offer superior energy density and extended life cycles compared to other battery chemistries, making them the ideal choice for high performance applications that require long run times and/or frequent cycling.

Lithium battery modules can be designed with a variety of different cell types and configurations to meet the specific needs of the application. The most common cell types used in lithium battery modules are 18650 cells, which are widely used in laptops, electric vehicles and solar energy storage systems.

Lithium battery modules can be configured in a number of different ways to meet the specific voltage, capacity and discharge rate requirements of the application. For example, a 48V 10Ah lithium battery module could be made up of 4 x 12V 10Ah cells connected in series. This particular configuration would be suitable for applications that require a high voltage and moderate discharge rate, such as electric vehicles.

The electrical performance of a lithium battery module is determined by a number of factors, including the type and configuration of the cells used, the operating temperature and the design of the module itself. In general, lithium battery modules exhibit excellent electrical performance, with high energy density, long life cycles and low self-discharge rates.

Electrical performance parameters

A lithium battery module typically contains a number of lithium cells connected in series and/or parallel. The electrical performance parameters of a lithium battery module depend on the number and type of cells used, as well as the configuration of the cells (series, parallel, or series-parallel).

The most important electrical performance parameters for a lithium battery module are the nominal voltage and capacity. The nominal voltage is determined by the number of cells in the module and the type of cells used. Capacity is a measure of how much energy the module can store, and is usually expressed in amp-hours (Ah) or watt-hours (Wh).

Other important electrical performance parameters include discharge current, charge current, maximum charge voltage, and minimum discharge voltage. These parameters determine how quickly the module can be charged and discharged, and how much power it can deliver.

The self-discharge rate is also an important parameter to consider, as it determines how much energy the module will lose over time when not in use. Generally speaking, lithium battery modules have very low self-discharge rates compared to other types of batteries.

When you have coordination challenges, turn to JS SOLAR for help
It's all about making things easy, building partnerships, and providing a point of contact.
Privacy Agreement
×

Platform Information Submission-Privacy Agreement

● Privacy Policy

no content yet



Email: jssolar@jssolar.com

Customer Service: 0086-510-81765900

Customer Service: +13771318673

Address: No. 501, Luyuan Road, Yixing City, Jiangsu Province, China


Order and Shipping Support

jssolar@jssolar.com / 0086-510-81765900


after sales support

jssolar@jssolar.com / 0086-510-81765900